Topology Optimization of Continuum Structures Based on Binary Hunter-Prey Optimization Algorithm

نویسندگان

چکیده

According to BESO’s principle of binarizing continuous design variables and the excellent performance standard HPO algorithm in terms solving optimization problems, a discrete binary Hunter-prey is introduced construct an efficient topology model. It was used solve problems that BESO method has, such as easily falling into local optimal value being unable obtain configuration; metaheuristic able model’s low computational efficiency could produce intermediate elements unclear boundaries. Firstly, BHPO constructed by processing using s-shape transformation function. Secondly, BHPO-BESO theory established combining with optimization. Using sensitivity information objective function updated meta-heuristic algorithm, semi-random search for configuration carried out. Finally, numerical simulation experiments were conducted three typical examples cantilever beam, simply supported clamping beam objects results compared solution The experimental showed BESO, find lower compliance maximum stiffness, it has higher efficiency, which can above problems.

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Isogeometric Topology Optimization of Continuum Structures using an Evolutionary Algorithm

Topology optimization has been an interesting area of research in recent years.  The main focus of this paper is to use an evolutionary swarm intelligence algorithm to perform Isogeometric Topology optimization of continuum structures.  A two-dimensional plate is analyzed statically and the nodal displacements are calculated.  The nodal displacements using Isogeometric analysis are found to be ...

متن کامل

Continuum Topology Optimization of Buckling-Sensitive Structures

Two formulations for continuum topology optimization of structures taking buckling considerations into account are developed, implemented, and compared. In the first, the structure undergoing a specified loading is modeled as a hyperelastic continuum at finite deformations, and is optimized to maximize the minimum critical buckling load. In the second, the structure under a similar loading is m...

متن کامل

VOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES

In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...

متن کامل

TOPOLOGY OPTIMIZATION OF STRUCTURES UNDER TRANSIENT LOADS

In this article, an efficient methodology is presented to optimize the topology of structural systems under transient loads. Equivalent static loads concept is used to deal with transient loads and to solve an alternate quasi-static optimization problem. The maximum strain energy of the structure under the transient load during the loading interval is used as objective function. The objective f...

متن کامل

TOPOLOGY OPTIMIZATION OF PLANE STRUCTURES USING BINARY LEVEL SET METHOD AND ISOGEOMETRIC ANALYSIS

This paper presents the topology optimization of plane structures using a binary level set (BLS) approach and isogeometric analysis (IGA). In the standard level set method, the domain boundary is descripted as an isocountour of a scalar function of a higher dimensionality. The evolution of this boundary is governed by Hamilton–Jacobi equation. In the BLS method, the interfaces of subdomai...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Symmetry

سال: 2023

ISSN: ['0865-4824', '2226-1877']

DOI: https://doi.org/10.3390/sym15051118